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* Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new
perspectives." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828.
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TCA: Transfer Component Analysis: Pan, Sinno Jialin, Ivor W. Tsang, James /Eﬁ%—

T. Kwok, and Qiang Yang. "Domain adaptation via transfer component N\

analysis." IEEE Transactions on Neural Networks 22, no. 2 (2011): 199-210. . BA
GFK: Geodesic Flow Kernel: Gong, Boging, Yuan Shi, Fei Sha, and Kristen :
Grauman. "Geodesic flow kernel for unsupervised domain adaptation." DDC , DAN

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference .

on, pp. 2066-2073. IEEE, 2012. .
NMN-O ® TLwithDL

DLID: Deep Learning for domain adaptation by Interpolating between
Domains: Chopra, Sumit, Suhrid Balakrishnan, and Raghuraman Gopalan.
"Dlid: Deep learning for domain adaptation by interpolating between . TL without DL
domains." ICML workshop on challenges in representation learning. Vol. 2.
2013.

@ DL without TL

DDC: Deep Domain Confusion: Tzeng, Eric, Judy Hoffman, Ning Zhang,
Kate Saenko, and Trevor Darrell. "Deep domain confusion: Maximizing for . DLID
domain invariance." arXiv preprint arXiv:1412.3474 (2014).

CA G
DAN: Deep Adaptation Networks: Long, Mingsheng, Yue Cao, Jianmin ‘ GFK
Wang, and Michael Jordan. "Learning transferable features with deep i
adaptation networks." In International Conference on Machine Learning,
pp. 97-105. 2015.

N

2011 2012 2013 2014 2015,

BA: Backpropagation Adaptation: Ganin, Yaroslav, and Victor Lempitsky.
"Unsupervised domain adaptation by backpropagation." In International
Conference on Machine Learning, pp. 1180-1189. 2015.




Deep Adaptation Networks (DAN) [Long et al. 2015]
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Transferability of Layer-wise Features

varying four transfer strategies varying similarity between domains

Conclusions What if

Fine-tuning with labeled data in a target domain always helps. No or limited labeled data

Transition from general to specific in a deep neural network.

Performance drops when two domains are very dissimilar. Two dissimilar domains




Unsupervised Deep Transfer Learning

* Goal: learn a classifier or a regressor for a target domain which is
and to a source domain.

* General architecture: Siamese architecture

tied layers adaptation layers
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. Unsupervised Deep Transfer Learning

* Objective

tied layers
A
—
source L
input




. Unsupervised Deep Transfer Learning

Directly minimizes the difference between two domains.
[Tzeng et al. 2014, Long et al. 2015, Long et al. 2017]

Encourages a common feature space through an adversarial objective
with respect to a domain discriminator. [Ganin et al. 2015, Tzeng et al.
2015, Liu and Tuzel 2016, Tzeng et al. 2017]

Combines both unsupervised and supervised training.
[Ghifary et al. 2016, Bousmalis et al. 2016]




Discrepancy Based Methods

* A source domain’s parameters = a target domain’s parameters
* Overall objective

[sotirce domain dlsssficationloss | domain distanceloss ¢, -

Maximum Mean
Discrepancy (MMD)

Multi-kernel
MMD (MK-MMD)

Joint Distribution
Discrepancy (JDD)

Tzeng et al. 2014 a specific layer  marginal distributions

Long et al. 2015 multiple layers  marginal distributions

Long et al. 2017 multiple layers joint distributions



Similarly in RNN for NLP

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How transferable are neural
networks in NLP applications? In EMNLP 2016
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Yue Zhao, Yan M. Xu, Mei J. Sun, Xiao N. Xu, Hui
Wang, Guo S. Yang, Qiang Ji: Cross-language
transfer speech recognition using deep learning.
ICCA 2014



=P A K~ ST T4 AT Multimodal Transfer Deep Learning with Applications in Audio-Visual
g*;'b‘ - *HL'*g -~ Recognition,Seungwhan Moon, Suyoun Kim, Haohan Wang,

arXiv:1412.3121
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AN IE 4k Regularization 1. Determinative Distance MMD

2. Learn to align: fool the domain
classifier
¢ Reverse Gradient: reverse the domain

mput classifier gradient for CNN[7] and
output wn .
source R R R B & RNN[8] representation layers
domain "(_; * ADDAJ[9]: Alternatively Optimize
, N S Domain classifier layer or the common
e feature by fixing the other
i o oy

input : "EEfl 3. Auxiliary Task Loss
target R R . v * Clustering[10]: add interpretability
domain and enable zero-shot learning
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(EiEVATFIZS S Transitive Transfer Learning

‘Ben Tan, Yu Zhang, Sinno

h‘! Jialin Pan, Qiang Yang:
e Distant Domain Transfer

Learning. AAAI 2017

*Ben Tan, Yanggiu Song, Erheng
Zhong, Qiang Yang: Transitive Transfer
Learning. KDD 2015




EBENEFEFS

1. A lot of labeled Source Data

@ @
@ ® O ® @ Reconstructed
i 2l i 2 |
put Data
Unlabeled @ O O @
—_—
Intermediate Data O O
3.Some labeled Target Data
Logistic Regression for Sample Selection for

Labeled Data Intermediate and Source Data



Parameter Initialization + Fine-tune

* Transfer Learning for Poverty prediction on satellite
1mage|[4]

* VGG-Net: initialize the parameter with last domain
and then finetune

Closeily related
[ |

= =

ImageNet Night Light Poverty
Massive data Less data Scarce data



HERIIMILE GAN

* G: £ 1EE generator
o D: | HIAE A discriminator

sampling
| noise \ z

|

true data
samples

Goodfellow, lan, et al. “Generative
adversarial nets.” NIPS 2014.
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Unsupervised cross-domain instance alignment

* Goal: Transfer style from source to target
* No pair-wise correspondence (CycleGAN, DiscoGAN and DualGAN)

Alignment

Alignment — model —>

model

DiscoGAN (Kim et al., 2017)

First, learn relations between handbags and shoes Then, generate a shoe while retaining key attributes of handbags



Cycle GAN Model architecture

L(G,F, D5, D7) = Loan(G, DT, X5, XTY + Loan(F. D%, X5, XT) + Aol G, P

T

Adversarial loss

* G: mapping from the source to the target, F: inverse mapping

* Total loss = Adversarial loss + cycle-consistency loss

L 1 HY

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint
arXiv:1703.10593 (2017).




Alignment results

* CycleGAN can fool human annotators on 25% of trials

More image translation results produced by CycleGAN (Zhu et al.,
2017)



Adversarial domain adaptation

* target domain has no labels; find common feature space between the source and
target by formulating a min-max game. Two constraints:
* Helpful for the source domain classification task
* indistinguishable between the source and target domain

Minimize source
label classification
error

Maximize domain
classification error

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." Journal of Machine Learning Research 17.59 (2016): 1-
35.
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Classification accuracies for multiple domain adaptation pairs

* Four source-target domain adaptation

* Source only: lower bound performance, no
adaptation is performed

* Target only: upper bound performance, train the
classifier with known target domain labels

* Subspace Alignment (SA) (Fernando et al., 2013)

* Domain Adversarial Neural Networks (DANN)
(Ganin, Yaroslav, et al., 2016)
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Dai, Wenyuan et al. 2017
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=S B S 47 : 1JCAI 2017: Zheng Li, Yu Zhang, et al.

“End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification”, IJCAI 2017,
Zheng Li, et al.
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Great books. His characters are The food is great, and the drinks
engaging. are tasty and delicious.

The food is very nice and tasty,

It is a very nice and sobering novel. and we'll o back again.

Shame on this place for the rude

A awful book and it is a little boring. staff and awful food



Memory Networks

* Capture evidence
(sentences, words) by
interest via attention
mechanism
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CoTrans Framework

Stage 1: Source-Target Domain Linking
=R

Shared (transferable) Features: dist., cov.
Random Forest (RF)

Stage 2: Target Domain Co-training
On RF + CNN (trajectory image)

Trajectory image: the brighter color, the
longer stay time in that cell.



Stage 2: Co-Training

e 1. In Feature Space 1, train new model M1 and find samples
by M1 (First time M1 comes from Source Domain)

* 2. In Feature Space 2, find image features of samples from
Step 1, train model M2; Find new samples by M2
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